วันพฤหัสบดีที่ 12 กุมภาพันธ์ พ.ศ. 2558

เซต



เซต (Sets) หมายถึง กลุ่มสิ่งของต่างๆ ไม่ว่าจะเป็น คน สัตว์ สิ่งของหรือนิพจน์ทางคณิตศาสตร์ ซึ่งสามารถระบุสมาชิกในกลุ่มได้ และเรียกสมาชิกในกลุ่มว่า "สมาชิกของเซต"   อ่านเพิ่มเติม


สับเซตและเพาเวอร์เซต


สับเซต   บทนิยาม เซต A เป็นสับเซตของเซต B ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสามารถเขียนแทนได้ด้วยสัญลักษณ์ A 

เพาเวอร์เซต บทนิยาม เพาเวอร์เซตของเซต A คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสับเซตทั้งหมดของเซต A และสามารถเขียนแทนได้ด้วยสัญลักษณ์ P(A)   อ่านเพิ่มเติม



การให้เหตุผลแบบอุปนัย


การให้เหตุผลแบบอุปนัย เป็นวิธีการสรุปผลมาจากการค้นหาความจริงจากการสังเกตหรือการทดลองหลายครั้งจากกรณีย่อยๆ แล้วนำมาสรุปเป็นความรู้แบบทั่วไป อ่านเพิ่มเติม

การให้เหตุผลแบบนิรนัย



  การให้เหตุผลแบบนิรนัยเป็นการนำความรู้พื้นฐานซึ่งอาจเป็นความเชื่อ ข้อตกลง กฎ หรือบทนิยาม ซึ่งเป็นสิ่งที่รู้มาก่อน และยอมรับว่าเป็นความจริงเพื่อหาเหตุผลนำไปสู่ข้อสรุป เป็นการอ้างเหตุผลที่มีข้อสรุปตามเนื้อหาสาระที่อยู่ภายในขอบเขตของข้ออ้างที่กำหนด  อ่านเพิ่มเติม



จำนวนจริง


จำนวนจริง
เซตของจำนวนจริงประกอบด้วยสับเซตที่สำคัญ  ได้แก่
เซตของจำนวนนับ/ เซตของจำนวนเต็มบวก เขียนแทนด้วย  I
                   I = {1,2,3…}
เซตของจำนวนเต็มลบ  เขียนแทนด้วย  I
เซตของจำนวนเต็ม เขียนแทนด้วย I


                   I = { …,-3,-2,-1,0,1,2,3…} อ่านเพิ่มเติม

ฟังก์ชันเชิงเส้น

ฟังก์ชันเชิงเส้น   คือ ฟังก์ชันที่อยู่ในรูป y = ax+b เมื่อ a ,b เป็นจำนวนจริง และ  a ¹ 0  กราฟของฟังก์ชันเชิงเส้นจะเป็นเส้นตรง อ่านเพิ่มเติม


ฟังก์ชั่นกำลังสอง

 ฟังก์ชันกำลังสอง  คือ  ฟังก์ชันที่อยู่ในรูป y   =   ax2 + bx + c    เมื่อ  a,b,c  เป็นจำนวนจริงใดๆ  และ a ¹ 0  ลักษณะของกราฟของฟังก์ชันนี้ขึ้นอยู่กับค่าของ  a , b  และ  c  และเมื่อค่าของ  a  เป็นบวกหรือลบ  จะทำให้ได้กราฟเป็นเส้นโค้งหงายหรือคว่ำ ซึ่งกราฟของฟังก์ชันกำลังสอง  เรียกว่า  พาราโบลา    อ่านเพิ่มเติม